Products of Gaussians and Probabilistic Minor Component Analysis
نویسندگان
چکیده
Recently, Hinton introduced the products of experts architecture for density estimation, where individual expert probabilities are multiplied and renormalized. We consider products of gaussian "pancakes" equally elongated in all directions except one and prove that the maximum likelihood solution for the model gives rise to a minor component analysis solution. We also discuss the covariance structure of sums and products of gaussian pancakes or one-factor probabilistic principal component analysis models.
منابع مشابه
Products of Gaussians
Recently Hinton (1999) has introduced the Products of Experts (PoE) model in which several individual probabilistic models for data are combined to provide an overall model of the data. Below we consider PoE models in which each expert is a Gaussian. Although the product of Gaussians is also a Gaussian, if each Gaussian has a simple structure the product can have a richer structure. We examine ...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملA Probabilistic Analysis of EM for Mixtures of Separated, Spherical Gaussians
We show that, given data from a mixture of k well-separated spherical Gaussians in Rd , a simple two-round variant of EM will, with high probability, learn the parameters of the Gaussians to nearoptimal precision, if the dimension is high (d lnk). We relate this to previous theoretical and empirical work on the EM algorithm.
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملUsing Probabilistic-Risky Programming Models in Identifying Optimized Pattern of Cultivation under Risk Conditions (Case Study: Shoshtar Region)
Using Telser and Kataoka models of probabilistic-risky mathematical programming, the present research is to determine the optimized pattern of cultivating the agricultural products of Shoshtar region under risky conditions. In order to consider the risk in the mentioned models, time period of agricultural years 1996-1997 till 2004-2005 was taken into account. Results from Telser and Kataoka mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2002